diseño de experimentos
domingo, 8 de abril de 2012
jueves, 5 de abril de 2012
PRUEBA DE IGUALDAD ENTRE VARIANZAS ( Poblaciones Pareadas )
Comparacion de dos medias con muestras dependientes.
Muestras pareadas
Son aquellas en las que los datos de ambos tratamientos se obtienen por pares, de manera que estos tienen algo en comun y no son dependientes.
Muestras pareadas
Son aquellas en las que los datos de ambos tratamientos se obtienen por pares, de manera que estos tienen algo en comun y no son dependientes.
martes, 3 de abril de 2012
domingo, 1 de abril de 2012
DISTRIBUCION TEORICA " t " DE STUDENT
La distribución-t o distribución t de Student es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño.
Veremos un nuevo concepto necesario para poder entender la distribución t Student. Este concepto es "grados de libertad".
Para definir grados de libertad se hará referencia a la varianza maestral:
Por ejemplo si n=4 y Entonces automáticamente tenemos , Así que solo de tres de las cuatro medidas de , están libremente determinadas, la otra debe tomar el valor que haga esta suma cero; es por esto que solo tenemos 3 grados de libertad.
Grados de libertad = número de mediciones - 1
Propiedades de las distribuciones t
1. Cada curva t tiene forma de campana con centro en 0.
2. Cada curva t, está más dispersa que la curva normal estándar.
3. A medida que k aumenta, la dispersión de la curva t correspondiente disminuye.
4. A medida que , la secuencia de curvas t se aproxima a la curva normal estándar
EJEMPLO
Con un nivel de significancia de 5% se selecciona de manera aleatoria tres paquetes de croquetas (bultos) alimento para perros, de cada uno de los cinco pedidos. Al pesar los 15 paquetes se obtiene la media de = 49.4 y una desviación estándar de S2 = 1.2
Establecer el estadístico de prueba calculado de acuerdo a la expresión
Sustituyendo datos queda:
Por tanto concluimos que
1.- se encuentra en la región de rechazo que por lo cual se considera que existe menor cantidad de croquetas en los paquetes.
2.- No cumple con lo que pide.
Esta fórmula está basada en n-1 grados de libertad. Esta terminología resulta del hecho de que si bien está basada en n cantidades , estas suman cero, así que especificar los valores de cualquier n-1 de las cantidades determina el valor restante.
lunes, 26 de marzo de 2012
DISTRIBUCION DE PROBABILIDAD TEORICA
Muestra todos los resultados posibles de un experimento y la probabilidad de cada resultado.
Ahora bien veamos un ejemplo claro y sencillo de como realizar un contraste de la hipotesis.
Un criador de perros compra costales de alimento (croketas) a una compañia . Segun los vendedores , los costales tienen un peso medio de 60 Kg. con una varianza de S^2 = 0.5 . El comprador sospecha que el peso medio es menor. Realizar el contraste de la hipotesis.
H0 = µ = 60
H1 = µ < 60
Ahora bien veamos un ejemplo claro y sencillo de como realizar un contraste de la hipotesis.
Un criador de perros compra costales de alimento (croketas) a una compañia . Segun los vendedores , los costales tienen un peso medio de 60 Kg. con una varianza de S^2 = 0.5 . El comprador sospecha que el peso medio es menor. Realizar el contraste de la hipotesis.
H0 = µ = 60
H1 = µ < 60
jueves, 1 de marzo de 2012
CONCEPTOS FUNDAMENTALES EN HIPOTESIS ESTADISTICA
Las hipótesis son proposiciones provisionales y exploratorias y, por tanto, su valor de veracidad o falsedad depende críticamente de las pruebas empíricas. El propósito de la prueba de hipótesis es determinar si el valor supuesto (hipotético de un parámetro poblacional, como la medida de la población, debe aceptarse como verosímil con base en evidencia muéstrales.
INFERENCIA ESTADISTICA
Es una parte de la estadística que comprende los métodos y procedimientos para deducir propiedades de una población, a partir de una pequeña parte de la misma.
INTERVALO DE CONFIANZA
Es un par de números entre los cuales se estima que estará cierto valor desconocido c.on una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional.
GRADOS DE LIBERTAD
Los grados de libertad de un estadístico calculado sobre n datos se refieren al número de cantidades independientes que se necesitan en su cálculo, menos el número de restricciones que ligan a las observaciones y el estadístico. Es decir, normalmente n-1.
POTENCIA DE LA PRUEBA
Es la probabilidad (igual a 1 - b) de evitar un error tipo II cuando la hipótesis nula es falsa.
REGION DE ACEPTACION
Es una prueba de hipótesis, es el intervalo de valores posibles del estadístico de prueba que señala la aceptación de la hipótesis nula.
REGION DE RECHAZO
Es una prueba de hipótesis, es el intervalo de valores posibles del estadístico de prueba que señala el rechazo de la hipótesis nula.
ERROR TIPO I
También denominado error de tipo alfa (α] o falso positivo, es el error que se comete cuando el investigador no acepta la hipótesis nula (Ho) siendo ésta verdadera en la población.
ERROR TIPO II
También llamado error de tipo beta (β) (β es la probabilidad de que exista éste error) o falso negativo, se comete cuando el investigador no rechaza la hipótesis nula siendo ésta falsa en la población.
ESTADISTICO DE PRUEBA
Tipo de estadístico a ser calculado de una muestra aleatoria simple tomada de la población de interés en una prueba de hipótesis y a utilizarse para establecer la verdad o falsedad de la hipótesis nula.
martes, 21 de febrero de 2012
TIPOS DE DISTRIBUCION EN ESTADISTICA INFERENCIAL
Distribución Normal: Se le llama así porque describe el tipo de distribución de probabilidad que se presenta en la mayoría de los casos y se caracteriza porque el valor de su función de densidad de probabilidad crece y decrece simétricamente a ambos lados de la Media, generando la llamada Campana de Gauss.
Distribución Gamma: Se emplea para las variables aleatorias continuas que son No Negativas, por lo que su gráfica está sesgada a la derecha.
Distribución Ji ó Chi-Cuadrada; Es un caso especial de la distribución Gamma, en el que alfa=V/2 y beta=2, generalmente se utiliza para ver si una distribución de Variable Aleatoria Continua, se puede ajustar a una distribución de Variable Aleatoria Discreta (tal como la Binomial o de Poisson).
Distribución t-Student; Es un caso especial de la distribución Normal, pero en ella se encuentran los datos más dispersos. Generalmente se emplea en la Inferencia estadística para calcular Intervalos de Confianza.
Suscribirse a:
Entradas (Atom)